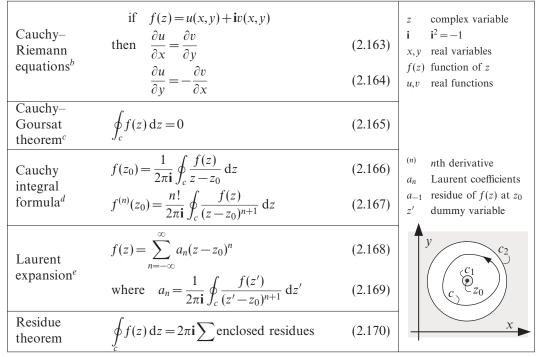
2.4 Complex variables

Complex numbers

Cartesian form	$z = x + \mathbf{i}y$	(2.153)	z i x,y	complex variable $i^2 = -1$ real variables
Polar form	$z = r\mathbf{e}^{\mathbf{i}\theta} = r(\cos\theta + \mathbf{i}\sin\theta)$	(2.154)	$r \\ heta$	amplitude (real) phase (real)
Modulus ^a	$ z = r = (x^2 + y^2)^{1/2}$ $ z_1 \cdot z_2 = z_1 \cdot z_2 $	(2.155) (2.156)	z	modulus of z
Argument	$\theta = \arg z = \arctan \frac{y}{x}$ $\arg(z_1 z_2) = \arg z_1 + \arg z_2$	(2.157) (2.158)	arg <i>z</i>	argument of z
Complex conjugate	$z^* = x - \mathbf{i}y = re^{-\mathbf{i}\theta}$ $\arg(z^*) = -\arg z$ $z \cdot z^* = z ^2$	(2.159) (2.160) (2.161)	z*	complex conjugate of $z = re^{i\theta}$
Logarithm ^b	$\ln z = \ln r + \mathbf{i}(\theta + 2\pi n)$	(2.162)	n	integer

^aOr "magnitude."

Complex analysis^a



^aClosed contour integrals are taken in the counterclockwise sense, once.

^eOf f(z), (analytic) in the annular region between concentric circles, c_1 and c_2 , centred on z_0 . c is any closed curve in this region encircling z_0 .

^bThe principal value of $\ln z$ is given by n=0 and $-\pi < \theta \le \pi$.

^bNecessary condition for f(z) to be analytic at a given point.

^cIf f(z) is analytic within and on a simple closed curve c. Sometimes called "Cauchy's theorem."

^dIf f(z) is analytic within and on a simple closed curve c, encircling z_0 .